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We demonstrate long-range control of the radiative lifetime of a silicon optical nanocavity using a
metallic atomic force microscope probe. We extract changes in the radiative lifetime from changes in the
cavity’s transmittivity resulting from probe-cavity interaction over distances of several optical wave-
lengths. Analogous to atomic systems, the cavity acts as an individual radiating dipole with a radiative rate
that is modified by a metallic interface.
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Controlling the time that photons remain trapped in an
individual state before being emitted is a fundamental
challenge in photonics and quantum information process-
ing. Optical resonant cavities allow one to trap photons for
a period of time (photon lifetime) dictated by the cavity
geometry. The photon lifetime (�p) can depend on several
factors including the radiation of the cavity into free space.
In active photonic devices such as switches, modulators,
and buffers, it is often necessary to dynamically modify �p
of optical resonant cavities [1]. Several techniques have
demonstrated this dynamic control of �p. These techniques
including free carrier injection [2], thermal control [3],
integrated fluidics [4], and near-field probes [5] all rely
on physical changes within the near field of the cavity
(distances less than one wavelength).

In instances where physical modifications in the near
field are impractical, far-field control of the radiative prop-
erties can in principle be achieved by manipulating the
local density of states at the source. It has been known for
more than three decades that reflections at metallic or
dielectric interfaces can modify the local density of states
for optical dipoles resulting in a change of their radiative
rate [6]. While far-field control of radiative lifetimes has
been observed in atomic and molecular ensembles [7–9],
only recently has this been achieved for individual optical
dipoles using sensitive scanned probe experiments [10].
Here, applying similar techniques, we show the first far-
field control of the radiative lifetime (�rad) of an individual
optical nanocavity and show it to be analogous to an
individual radiating dipole.

To demonstrate far-field tuning of �rad of an optical
nanocavity, we perturb the local density of states with a
scanning metallic probe and extract the resulting change in
�rad from the cavity’s transmission properties. The effect of
changing local density of states can be calculated by con-
sidering the interference between the source field and its
reflection [11,12]. An increase or decrease in the local
density of states is equivalent to the reflected field con-
structively or destructively interfering with the source
field. This results in a change in �rad, which depends on
the phase relationship between the source field and the

radiation reflected by a metallic probe. By controlling the
position of a scanning probe we tune this phase relation-
ship, thereby controllably increasing or decreasing �rad. We
increase the sensitivity of the experiment by working in a
cavity configuration and extracting changes in �rad from
changes in the cavity transmission. Using this technique,
we can detect lifetime modifications of less than 1%. This
corresponds to a temporal sensitivity of less than one
femtosecond for the cavity used in our experiment, which
has a �p of about 20 fs. Our experiment is enabled by
recent development of sensitive transmission measure-
ments similar to those made with transmission-based
near-field scanning optical microscopy (TraNSOM) [13]
as well as integrated resonant cavities with nanoscale mode
volumes [14].

The optical nanocavity used in our experiment is em-
bedded in a quasi-1D photonic crystal coupled to an input
and output waveguide [14]. The device is fabricated in
silicon on insulator using electron beam lithography and
reactive ion etching. Fabrication details can be found in
[13]. As seen in the scanning electron micrograph (SEM)
in the Fig. 1(a) inset, the nanocavity is defined by the two
sets of holes separated by about 500 nm. These sets of
holes act as quasi-1D photonic crystals forming partial
reflectors that trap light between them when the input
wavelength matches the resonance condition [15]. The
slot in the cavity center decreases the effective volume of
the resonance cavity and increases the radiative rate as a
result of the lower index contrast between the cavity and
the cladding [16]. The experimental setup described in
detail in [13] consists of amplified spontaneous emission
from an erbium doped fiber amplifier filtered to � �
1565 nm to match the cavity resonance and is coupled
into and out of the device through optical fibers. The device
is then imaged using a PtIr-coated probe in tapping mode
on an atomic force microscope (AFM), which simulta-
neously records the topography and power transmitted
through the device. Note that the transmission is not de-
modulated at the tapping frequency. In tapping mode the
amplitude of probe oscillation in the z direction is about
100th of the optical wavelength used in this experiment.
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Therefore, the effect of probe oscillation on the change in
radiative lifetime is negligible and the probe can be con-
sidered to be in contact with the surface. Figure 1(a) shows
the topography of the resonant cavity as measured with the
AFM, and Fig. 1(b) shows the simultaneously measured
change in transmission as a function of probe position.
Figure 1(c) shows a cross section through the measured
data and theoretical model taken along the dashed line in
Figs. 1(b) and 1(d), respectively. Figure 1(d) represents a
theoretical model for the experimentally measured change
in transmission shown in Fig. 1(b). This model, based on
probe-cavity interaction, is explained in detail in the fol-
lowing sections.

To extract the change in �rad from the measured change
in power transmitted through the cavity, we model the
optical cavity as shown in Fig. 2(a). We can write the on-
resonance cavity transmittivity (T) and reflectivity (R) of
the cavity shown in Fig. 2(a) as [17]

 T � ��2=�c�=�1=�rad � 2=�c��
2; (1)

 R � ��1=�rad�=�1=�rad � 2=�c��2; (2)

where �rad and �c are the radiative and coupling lifetimes,
respectively. Since absorption in small volume resonant
cavities is negligible [18], �rad refers to the time it takes for
the energy in the resonant cavity to decay by a factor of 1=e

if the cavity is isolated from the input and output wave-
guides. Similar to atomic dipoles, the stored energy is lost
by radiation into free space that is determined by the local
density of states. The coupling lifetime, on the other hand,
refers to the time it takes light to couple into or out of the
resonant cavity through the waveguides [Fig. 2(a)]. It is
important to note that, unlike �rad, �c is independent of the
local density of states and is determined only by the mode
overlap between the guided mode in the resonator, the
decaying Bloc mode in the 1D photonic crystal, and the
waveguide mode [18]. Since the probe is several wave-
lengths away from the guided modes, we can apply first
order perturbation theory and assume that the mode pro-
files do not change as a result of the probe [19] and the
overlap integrals that determine �c remain unchanged. The
photon lifetime refers to the time it takes the energy in the
coupled cavity [Fig. 2(a)] to decay by a factor of 1=e and
can be written as 1=�p � 1=�rad � 2=�c. Defining the ratio
of the unperturbed radiative to coupling lifetimes as � �
�rad=�c, we can write the relative change in transmission in
terms of the change in �rad:
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Here the primes indicate the perturbed quantities. In prin-
ciple � can be determined experimentally from the ratio of
the on-resonance transmittivity (1) and reflectivity (2) of
the resonator: � � 1=2
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[17]. In practice this requires

precise knowledge of the transmission and reflection co-
efficients at each optical fiber-to-chip interface. Since the
positions of the optical fibers shift slightly during the
adhesive curing process, the coefficients at these interfaces
vary significantly, making the absolute transmission prop-
erties difficult to characterize. Instead, we estimate � by
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FIG. 2 (color online). (a) Schematic of an optical resonant
cavity coupled to the input and output waveguides where T
and R are the transmittivity and reflectivity, respectively.
(b) Model of the cavity-probe interaction as viewed from the
side (not to scale). Stars labeled I1 and I2 represent image
dipoles resulting from reflections at the probe apex and cantile-
ver, respectively.

FIG. 1 (color online). (a) Topography of the resonant cavity as
measured by an atomic force microscope. Inset shows a scanning
electron micrograph corresponding to the dashed box. Arrows
show the direction of light propagation. (b) Measured trans-
mission through the cavity recorded simultaneously with the
topography in (a). (c) Measured (solid line) and calculated
(dashed line) relative change in transmission (T0=T) and corre-
sponding change in radiative lifetime (��rad) as a function of the
source-probe separation taken along the dashed lines in (b) and
(d), respectively. (d) Calculated change in transmission as a
function of probe position based on the model in Fig. 2.
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simulating pulse propagation through the device using a
3D finite difference time domain method. Using this tech-
nique we calculate an on-resonance transmittivity of T �
0:48 and reflectivity of R � 0:10 from which we estimate
� to be 1.10. Note that we neglect the transmission change
resulting from a shift in resonant frequency since for
classical dipoles this effect is smaller than the change in
�rad by a factor 1=!0�rad � 1 [12]. Note that in Fig. 1(b)
changes in �rad are observed at distances of more than nine
microns from the source, which corresponds to more than
five optical wavelengths. This confirms we are indeed
observing source-probe interaction beyond the near field.

The oscillation of the transmitted power shown in
Figs. 1(b)–1(d) can be understood by the model shown in
Fig. 2(b) depicting a side view of the cavity and the image
dipoles resulting from the reflections by the probe.
Reflection from the tip of the probe and the cantilever
create two distinct image dipoles denoted as the stars
labeled I1 and I2, respectively. As the probe position
changes, the distances between the source and image di-
poles change, altering the phase relationship between the
source and reflected fields. Therefore, we expect �rad to
oscillate as a function of the probe position, which we
indeed measure in Fig. 1(b). Based on the geometry of
the probe-cavity interaction in Fig. 2(b), we expect the
lifetime oscillation due to I1 to have a period of
�=2 cos��� where � is the half-angle of the probe cone
near the apex as depicted in Fig. 2(b). Since � is a small
angle (15	 
 3	 according to SEM images of the probe)
the period of the oscillation is close to half the free space
wavelength (0.783 microns). This corresponds to the di-
polelike radiation pattern centered at the cavity as shown in
Fig. 1(b). On the other hand, lifetime oscillation due to I2

should have a period of �=2 sin��� where � is the angle of
the cantilever that is specified by the manufacturer to be
13	 
 0:5	. This corresponds to a period of about 7 mi-
crons and should vary only as the probe is scanned in the y
direction. This is seen as the long oscillations along the y
direction measured in Fig. 1(b). Note that a scan along the
y direction corresponds to a scan from right to left in
Fig. 2(b) and a scan from bottom to top in Fig. 1(b). We
verify the effect of both image dipoles by plotting in Fig. 3
the 2D fast Fourier transform (2DFFT) of Fig. 1(b). Indeed,
Fig. 3 shows distinct peaks at large wave numbers near
4� cos�15	�=� (dotted circle) as well as peaks at small
wave numbers along the y direction near 4� sin�13	�=�
(dashed lines). Note that the probe is modeled simply as a
reflecting surface at an angle determined according to
Fig. 2(b) and a reflectivity that contributes to the constant
� defined below. Probes of other materials or complex
geometries with multiple facets could allow for additional
image dipoles of varying magnitudes that could result in a
greater overall effect on �rad.

To quantify the absolute change in �rad, we mathemati-
cally express the above model and compare it to the

measured data using a single fitting parameter. The field
from the image dipoles interacts with the cavity (source
dipole) perturbing its dipole moment. We write this per-
turbed dipole moment (p0) as the sum of the unperturbed
dipole moment (p) and the effect of the image dipole: p0 �
p� �jpjep�r�. Here the image dipole is represented as
jpjep�r� where ep�r� is the electric field of a unit dipole
at position r [determined by the probe position according
to Fig. 2(b)] measured at the cavity position. This term is
multiplied by the reflectivity of the probe and the effective
polarizability of the cavity, which we group as a single
term � that is our fitting parameter. Note from the minus
sign preceding ep that we have assumed that reflection
from the metallic probe results in a � phase shift as
expected from near-perfect metals. Since the radiated
power is proportional to the square of the oscillating dipole
moment [12], we can write

 �rad=�0rad � jp
0j2=jpj2 � jp̂� �ep�r�j2: (4)

We calculate the expected change in transmission as a
function of probe position by first calculating the known
radiation pattern of a unit dipole, combining (4) with (3),
and taking the unit vector p̂ to be along the y direction [as
suggested by Fig. 1(b)], and � to be the calculated value of
1.09. We then fit our model to the measured data using a
least-squares fit along the dashed line in Fig. 1(b) with � as
the sole fitting parameter. According to the fit, we deter-
mine � � 4�"0�6:3
 0:1� 10�22� m3 (which is about
8 orders of magnitude larger than the polarizability of a
single atom) and plot our model (dashed line) and the
measured data (solid line) in Fig. 1(c). Note we have
applied this fit over a region where the probe is more
than one wavelength away from the cavity center. This is
done to avoid probe-cavity interactions in the near field
where the analogy between the nanocavity and a radiating
dipole breaks down since one must consider the exact
mode profile of the resonant cavity [20,21]. The model

FIG. 3 (color online). A 2DFFT of the data in Fig. 1(b). Dotted
circle shows the wave numbers corresponding to the probe cone
half-angle of 15	. Dashed line shows the wave numbers along
the y direction corresponding to the cantilever angle of 13	.
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shows excellent agreement with the measured data for
large probe-cavity separations. For short separation dis-
tances, however, the measured data have a slightly longer
oscillation period since the half-cone angle of the probe is
smaller near the apex. We determine the unperturbed value
of �rad from the full width half maximum (FWHM) of the
resonance (�� � 65
 12 nm) and the calculated value of
� according to �rad � �1� 2���2

0=2�c�� � 64
 13 fs.
This can be derived from the definition of � and !0�p 
�=�� [19]. Using the values of� � 1:10 and �rad � 64 fs,
we calculate the absolute change in �rad according to (1)
and represent those values as the y axis on the right hand
side of Fig. 1(c). Note that by extracting the change in �rad

from the change in transmission we are able to resolve
changes of less than one femtosecond, which would be
extremely difficult to measure in the time domain. For
high-Q cavities, however, such as those reported in [22],
this long-range change in �rad could be on the order of
picoseconds. Optimizing the probe geometry could also
greatly enhance these long-range effects.

To verify that our model correctly predicts the measured
transmission changes in two dimensions [Fig. 1(b)], we
plot in Fig. 1(d) the simulated 2D probe-cavity interaction
based on (1), the calculated value of �, and the fitted
parameter �. Note that in Fig. 1(d) we have included
only the effect of the image dipole formed by the probe
[I1 in Fig. 2(b)] since this is the most sensitive to the probe
position. We see that the simulated transmission changes in
Fig. 1(d) indeed match the measured dipolelike pattern
shown in Fig. 1(b). Note that Fig. 1(d) is generated based
on the angle of both the probe and the cantilever as shown
in Fig. 2(b). The small 13	 angle of the cantilever causes
the pattern above the cavity (positive y) to be slightly
different from the pattern below the cavity (negative y).
Although this effect is small, the fringes above the cavity
are noticeably stronger than those below the cavity in both
the measured [Fig. 1(b)] and calculated [Fig. 1(d)] images.

By controlling the position of a scanning probe in the
optical far-field, we have demonstrated the first far-field
control of the radiative lifetime of an individual optical
nanocavity. By extracting this change in �rad from the
change in resonant cavity transmission, we have demon-
strated subfemtosecond temporal sensitivity. Although the
magnitude of change in �rad reported in this Letter is less
than 1%, these changes can be extremely precise and
tunable. The magnitude can be increased by changing the
reflectivity of the probe material or altering the geometry to
allow for a greater number of image dipoles. The long-
range control of radiative properties reported here could
lead to advances in photonics and quantum information
processing, which require precise control over photon
dynamics. We have also shown that radiation from pho-
tonic nanocavities is analogous to individual optical dipole
radiation. This opens the door to new experiments control-
ling and characterizing the radiation properties of individ-
ual optical dipoles as well as photonic nanocavities.
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